Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurorobot ; 18: 1348029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638361

RESUMO

With the global geriatric population expected to reach 1.5 billion by 2050, different assistive technologies have been developed to tackle age-associated movement impairments. Lower-limb robotic exoskeletons have the potential to support frail older adults while promoting activities of daily living, but the need for crutches may be challenging for this population. Crutches aid safety and stability, but moving in an exoskeleton with them can be unnatural to human movements, and coordination can be difficult. Frail older adults may not have the sufficient arm strength to use them, or prolonged usage can lead to upper limb joint deterioration. The research presented in this paper makes a contribution to a more detailed study of crutch-less exoskeleton use, analyzing in particular the most challenging motion, sit-to-stand (STS). It combines motion capture and optimal control approaches to evaluate and compare the STS dynamics with the TWIN exoskeleton with and without crutches. The results show trajectories that are significantly faster than the exoskeleton's default trajectory, and identify the motor torques needed for full and partial STS assistance. With the TWIN exoskeleton's existing motors being able to support 112 Nm (hips) and 88 Nm (knees) total, assuming an ideal contribution from the device and user, the older adult would need to contribute a total of 8 Nm (hips) and 50 Nm (knees). For TWIN to provide full STS assistance, it would require new motors that can exert at least 121 Nm (hips) and 140 Nm (knees) total. The presented optimal control approaches can be replicated on other exoskeletons to determine the torques required with their mass distributions. Future improvements are discussed and the results presented lay groundwork for eliminating crutches when moving with an exoskeleton.

2.
Front Robot AI ; 8: 785251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087873

RESUMO

Lower-limb exoskeletons have been created for different healthcare needs, but no research has been done on developing a proper protocol for users to get accustomed to moving with one. The user manuals provided also do not include such instructions. A pre-test was conducted with the TWIN (IIT), which is a lower-limb exoskeleton made for persons with spinal cord injury. In the pre-test, two healthy, able-bodied graduate students indicated a need for a protocol that can better prepare able-bodied, first-time users to move with an exoskeleton. TWIN was used in this preliminary study and nine users were divided to receive a tutorial or no tutorial before walking with the exoskeleton. Due to COVID-19 regulations, the study could only be performed with healthy, young-to-middle-aged lab members that do not require walking support. The proposed protocol was evaluated with the System Usability Scale, NASA Raw Task Load Index, and two custom surveys. The members who received the tutorial found it easy to follow and helpful, but the tutorial seemed to come at a price of higher perceived mental and physical demands, which could stem from the longer testing duration and the need to constantly recall and apply the things learned from the tutorial. All results presented are preliminary, and it is recommended to include biomechanical analysis and conduct the experiment with more participants in the future. Nonetheless, this proof-of-concept study lays groundwork for future related studies and the protocol will be adjusted, applied, and validated to patients and geriatric users.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...